Нобелевское признание графена. Чем ответит Украина?

8 октября, 2010, 14:14 Распечатать

В электронном микроскопе графен напоминает пчелиные соты, где расстояние между соседними атомами — одна десятая миллиардной доли метра...

В электронном микроскопе графен напоминает пчелиные соты, где расстояние между соседними атомами — одна десятая миллиардной доли метра. С тех пор начался настоящий бум. Говорят даже о появлении «физики графена» — новой междисциплинарной области исследований на стыке физики конденсированной среды, физики высоких энергий и материаловедения.

Ведь новый материал, несмотря на «хрупкость», проявил более высокую, чем у стали механическую жесткость и удивительную устойчивость к нагреванию. А самое главное — электроны в нем (по ряду важных физических свойств похожи не на электроны в других твердых телах, а на релятивистские частицы без массы — фотоны и нейтрино) обеспечивают графену очень высокую проводимость (на порядки выше, чем у кремния — основного материала современной электроники). Следовательно, приборы на основе графена могут оказаться значительно «более быстрыми». Это особенно важно, поскольку транзисторы на основе кремния сегодня почти «исчерпали» свой резерв быстродействия и продолжается интенсивный поиск новых материалов.

В определенном смысле графен был получен задолго до 2004 года. Ведь плоскости графена, объединенные слабыми связями, образуют такой давно известный человеку кристалл, как графит. А потому каждый художник, проводя по бумаге карандашом, создает и микроплоскости, где остается всего несколько, а то и одноатомный слой углерода. Однако реально исследовать двухмерный углерод (а тем более — подвести к нему электрические контакты) позволило лишь создание в 1980-х атомного силового микроскопа и развитие нанотехнологий.

Примитивная технология первых работ по получению графена была названа «методом отшелушивания». К образцу графита прикладывали обыкновенный скотч. Потом его осторожно отдирали — с налипшими фрагментами графита, которые в отдельных местах могли иметь одноатомную толщину. Затем скотч прижимали к подкладке (сейчас в роли подкладки зачастую используют слой диэлектрика SiO2). Далее скотч удаляли химическими методами, а закрепленный на подкладке углерод оставался. С помощью оптического микроскопа (одноатомный слой углерода можно видеть, ведь он поглощает 2,3% падающего на него света!) определяли фрагменты подкладки, на которых оставался моноатомный слой (они имели размер до 10 микрон). Потом оставалась ювелирная работа — подвести электрические контакты.

У такой технологии есть очевидные недостатки: невозможно получить пленку определенного размера и формы в определенном заранее месте подкладки. Стоимость первых образцов графена была астрономическая — около 100 млн. долл./см2. Однако именно эта примитивная и затратная технология позволила получить революционные результаты в квантовой физике конденсированной среды.

Почти сразу начались попытки усовершенствовать технологию изготовления графена. Наиболее пригодным для промышленного производства оказался метод, во главе угла которого лежит осаживание из газовой фазы. Благодаря этому в 2009 году графен уже производили в мире тоннами, а его стоимость снизилась до 100 долл./см2.

Наконец, действительно прорывный эффект имела работа химиков из Японии и Южной Кореи, которые выращивали графен на больших плоскостях медной фольги осаживанием из паровой фазы — и летом 2010 года получили листы графена на подкладке с диагональю в 75 см. Их использовали в сенсорном дисплее, который не уступал стандартным дисплеям, созданным на основе проводных слоев из индиево-оловянных оксидов.

На основе графена уже созданы эффективные газовые сенсоры, которые «чувствуют» присутствие одной-единственной молекулы определенного газа, биосенсоры для клеток и молекул ДНК, светодиоды, ионисторы (конденсаторы большой емкости), способные перезаряжаться более ста раз в секунду. Есть обнадеживающие результаты относительно применения графена для лечения опухолей.

Однако создание на основе графена полевого транзистора (а именно это может означать революцию в электронике!) наталкивается на трудности принципиального характера. Из-за особенностей физики графена при любых приложенных к затвору напряжениях трудно добиться существенного изменения сопротивления, необходимого для создания двух состояний — проводящего и непроводящего, на которых основывается двоичная логика. Следовательно, нужно изменить эти свойства так, чтобы графен стал похожим на обычный полупроводник. И уже в феврале 2010 года специалисты IBM сообщили о создании полевого транзистора на основе графена с быстродействием в 100 ГГц, что превышает быстродействие кремниевого транзистора.

К сожалению, «графеновый» бум происходит вне Украины. Хотя есть определенные достижения и у нас. Еще в конце 1980-х элегантные работы по физике тонких слоев графита выполнил Владимир Литовченко с сотрудниками — они относятся к «предыстории» графена. В самых престижных журналах и сегодня появляются «графеновые» статьи Федора Васько, Вячеслава Кочелапа, Вадима Локтева, Станислава Репецкого, других наших теоретиков. А вот с экспериментом — все почти на нулевом уровне. Ведь даже сегодняшние нобелевские лауреаты смогли реализовать себя лишь за границей — Гейм защитил в России только кандидатскую, Новоселов и диплом PhD получил уже на Западе. Что уж говорить о бедных, оборудованных устаревшими приборами украинских лабораториях? Даже в рамках утвержденной в прошлом году Государственной программы развития нанотехнологий и наноматериалов по конкурсу НАН рекомендована пока для поддержки одна-единственная «графеновая» работа — тоже теоретическая...

По-видимому, такая ситуация требует срочной корректировки — хотя бы на уровне НАН (ведь Госнауки до сих пор находится в стадии становления, а приоритеты нынешнего руководства Минобразования лежат в совсем другой плоскости). А между тем сегодня «графеновые» роботы становятся прямым показателем конкурентоспособности государства в международном научном распределении труда.

Оставайтесь в курсе последних событий! Подписывайтесь на наш канал в Telegram
Заметили ошибку?
Пожалуйста, выделите ее мышкой и нажмите Ctrl+Enter
Добавить комментарий
Осталось символов: 2000
Авторизуйтесь, чтобы иметь возможность комментировать материалы
Всего комментариев: 0
Выпуск №23, 16 июня-22 июня Архив номеров | Содержание номера < >
Вам также будет интересно