Физикам Боннского университета удалось получить конденсат Бозе-Эйнштейна, который, как до сих пор считалось в научных кругах, невозможно получить. Благодаря зеркалам, удаче и изобретательности, экспериментаторы сумели охладить фотоны до состояния «суперфотонов» и изобрести тем самым невиданный источник освещения.Физикам Боннского университета удалось получить конденсат Бозе-Эйнштейна, который, как до сих пор считалось в научных кругах, невозможно получить. Благодаря зеркалам, удаче и изобретательности экспериментаторы сумели охладить фотоны до состояния «суперфотонов» и изобрести тем самым невиданный источник освещения.«Сверхчастицы» возникали и раньше, но из света — никогда. К примеру, атомы рубидия, если поместить их в небольшую ёмкость и охладить до температуры, близкой к абсолютному нулю, придут в минимально возможное квантовое состояние. В теории фотоны должны вести себя аналогичным образом, но если начать их охлаждать, они просто исчезнут.
При наличии электрического тока нить накала в обычных лампочках нагревается и начинает светиться — сначала красным, потом жёлтым и, наконец, голубым. Примерно то же самое, только мысленно, физики проделывают с абсолютно чёрным телом: нагревают его, пока оно не начинает излучать волны разной длины в зависимости от температуры.
При охлаждении абсолютно чёрного тела оно в какой-то момент перестаёт излучать в видимом спектре, переходя на инфракрасные фотоны. В этом и заключается фотонная проблема: по мере снижения температуры уменьшается плотность излучения. Сохранение определённого количества фотонов при охлаждении оказалось почти неразрешимой задачей для исследователей конденсата Бозе-Эйнштейна.
Чтобы избежать рассеивания фотонов, их надо заставить двигаться. Для этого немецкие учёные использовали два зеркала, которые постоянно «отфутболивали» фотоны. При этом фотоны сталкивались с молекулами пигмента, расположенными между двумя отражающими слоями. Эти молекулы поглощали фотон и затем выбрасывали его обратно. С каждым таким столкновением фотоны медленно охлаждались до температуры молекул, то есть до комнатной.
Открытие имеет огромное значение с далекоидущими практическими последствиями, особенно для производства микросхем. Сегодняшние лазеры не могут работать на волнах ультрафиолетового и рентгеновского диапазонов. С фотонным конденсатом Бозе-Эйнштейна это реально.
Неспособность изготавливать микросхемы с помощью коротковолнового лазера обуславливает нынешний предел прецизионности электрической цепи. Более мелкая гравировка означает появление более мощных микросхем, и это только начало.
Ученые уверенны, что ни одна технология из тех, что используют свет, — от медицинских средств визуализации и лабораторной спектроскопии до фотоэлектрической энергетики — не останется в стороне.